In geometry, the small ditrigonal dodecacronic hexecontahedron (or fat star) is a nonconvex isohedral polyhedron. It is the dual of the uniform small ditrigonal dodecicosidodecahedron. It is visually identical to the small dodecicosacron. Its faces are darts. A part of each dart lies inside the solid, hence is invisible in solid models.

Proportions

Faces have two angles of arccos ( 5 12 1 4 5 ) 12.661 078 804 43 {\displaystyle \arccos({\frac {5}{12}} {\frac {1}{4}}{\sqrt {5}})\approx 12.661\,078\,804\,43^{\circ }} , one of arccos ( 5 12 1 60 5 ) 116.996 396 851 70 {\displaystyle \arccos(-{\frac {5}{12}}-{\frac {1}{60}}{\sqrt {5}})\approx 116.996\,396\,851\,70^{\circ }} and one of 360 arccos ( 1 12 19 60 5 ) 217.681 445 539 45 {\displaystyle 360^{\circ }-\arccos(-{\frac {1}{12}}-{\frac {19}{60}}{\sqrt {5}})\approx 217.681\,445\,539\,45^{\circ }} . Its dihedral angles equal arccos ( 44 3 5 61 ) 146.230 659 755 53 {\displaystyle \arccos({\frac {-44-3{\sqrt {5}}}{61}})\approx 146.230\,659\,755\,53^{\circ }} . The ratio between the lengths of the long and short edges is 31 5 5 38 1.110 008 944 41 {\displaystyle {\frac {31 5{\sqrt {5}}}{38}}\approx 1.110\,008\,944\,41} .

References

  • Wenninger, Magnus (1983), Dual Models, Cambridge University Press, ISBN 978-0-521-54325-5, MR 0730208

External links

  • Weisstein, Eric W. "Small ditrigonal dodecacronic hexecontahedron". MathWorld.

Retrosphenoverted ditrigonal hexacosidishecatonicosachoron Polytope Wiki

1012

Small ditrigonal dodecicosidodecahedron v1 Free 3D Model .obj .stl

small ditrigonal dodecicosidodecahedron (43)

Dual 42